Explain

BINNExplainer

A class for explaining the predictions of a BINN model using SHAP values.

Parameters:

Name Type Description Default
model BINN

A trained BINN model.

required
Source code in binn/explainer.py
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
class BINNExplainer:
    """
    A class for explaining the predictions of a BINN model using SHAP values.

    Args:
        model (BINN): A trained BINN model.
    """

    def __init__(self, model: BINN):
        self.model = model

    def update_model(self, model: BINN):
        self.model = model

    def explain(self, test_data: torch.tensor, background_data: torch.tensor):
        """
        Generates SHAP explanations for a given test_data by computing the Shapley values for each feature using
        the provided background_data. The feature importances are then aggregated and returned in a pandas dataframe.

        Args:
            test_data (torch.Tensor): The input data for which to generate the explanations.
            background_data (torch.Tensor): The background data to use for computing the Shapley values.

        Returns:
            pd.DataFrame: A dataframe containing the aggregated SHAP feature importances.
        """
        shap_dict = self._explain_layers(background_data, test_data)
        feature_dict = {
            "source": [],
            "target": [],
            "source name": [],
            "target name": [],
            "value": [],
            "type": [],
            "source layer": [],
            "target layer": [],
        }
        connectivity_matrices = self.model.get_connectivity_matrices()
        feature_id_mapping = {}

        feature_id = 0
        feature_id_mapping["root"] = feature_id
        for layer_features in shap_dict["features"]:
            for feature in layer_features:
                feature_id += 1
                feature_id_mapping[feature] = feature_id

        curr_layer = 0
        for sv, features, cm in zip(
            shap_dict["shap_values"], shap_dict["features"], connectivity_matrices
        ):
            sv = np.asarray(sv)
            sv = abs(sv)
            sv_mean = np.mean(sv, axis=1)

            for feature in range(sv_mean.shape[-1]):
                n_classes = sv_mean.shape[0]
                connections = cm[cm.index == features[feature]]
                connections = connections.loc[
                    :, (connections != 0).any(axis=0)
                ]  # get targets and append to target
                for target in connections:
                    for curr_class in range(n_classes):
                        feature_dict["source"].append(
                            feature_id_mapping[features[feature]]
                        )
                        feature_dict["target"].append(feature_id_mapping[target])
                        feature_dict["source name"].append(features[feature])
                        feature_dict["target name"].append(target)
                        feature_dict["value"].append(sv_mean[curr_class][feature])
                        feature_dict["type"].append(curr_class)
                        feature_dict["source layer"].append(curr_layer)
                        feature_dict["target layer"].append(curr_layer + 1)
            curr_layer += 1
        df = pd.DataFrame(data=feature_dict)
        return df

    def fast_train(self, dataloader, num_epochs, optimizer):
        for epoch in range(num_epochs):
            self.model.train() 
            total_loss = 0.0
            total_accuracy = 0

            for _, (inputs, targets) in enumerate(dataloader):
                inputs = inputs.to(self.model.device)
                targets = targets.to(self.model.device).type(torch.LongTensor)
                optimizer.zero_grad()
                outputs = self.model(inputs).to(self.model.device)
                loss = torch.nn.functional.cross_entropy(outputs, targets)
                loss.backward()
                optimizer.step()
                total_loss += loss.item()
                total_accuracy += torch.sum(torch.argmax(outputs, axis=1) == targets) / len(targets)

            avg_loss = total_loss / len(dataloader)
            avg_accuracy = total_accuracy / len(dataloader)
        print(f'Final epoch: Average Accuracy {avg_accuracy:.2f}, Average Loss: {avg_loss:.2f}')
        return self.model

    def explain_average(
        self,
        test_data: torch.Tensor,
        background_data: torch.Tensor,
        nr_iterations: int,
        max_epochs: int,
        dataloader,
        fast_train : bool
    ) -> pd.DataFrame:
        """
        Computes the SHAP explanations for the given test_data by averaging the Shapley values over multiple iterations.
        For each iteration, the model's parameters are randomly initialized and trained on the provided data using
        the provided trainer and dataloader. The feature importances are then aggregated and returned in a pandas dataframe.

        Args:
            test_data (torch.Tensor): The input data for which to generate the explanations.
            background_data (torch.Tensor): The background data to use for computing the Shapley values.
            nr_iterations (int): The number of iterations to use for averaging the Shapley values.
            trainer: The PyTorch Lightning trainer to use for training the model.
            dataloader: The PyTorch DataLoader to use for loading the data.

        Returns:
            pd.DataFrame: A dataframe containing the aggregated SHAP feature importances.
        """
        dfs = {}
        for iteration in range(nr_iterations):
            print(f"Iteration {iteration}")
            self.model.reset_params()
            self.model.init_weights()
            if fast_train:
                optimizer = self.model.configure_optimizers()[0][0]
                self.model = self.fast_train(dataloader, max_epochs, optimizer)
            else:
                trainer = pl.Trainer(max_epochs=max_epochs)
                trainer.fit(self.model, dataloader)
            df = self.explain(test_data, background_data)
            dfs[iteration] = df

        col_names = [f"value_{n}" for n in range(len(list(dfs.keys())))]
        values = [df.value.values for df in dfs.values()]
        values = np.array(values)
        values_mean = np.mean(values, axis=0)
        values_std = np.std(values, axis=0)
        df = dfs[0].copy()
        df.drop(columns=["value"], inplace=True)
        df[col_names] = values.T
        df["value_mean"] = values_mean
        df["values_std"] = values_std
        df["value"] = values_mean
        return df

    def recursive_pathway_elimination(
        self,
        input_data,
        design_matrix,
        nr_iterations: int = 20,
        max_epochs: int = 50,
        clip_threshold=1e-5,
        constant_removal_rate=0.05,
        min_features_per_layer=3,
        early_stopping=True,
    ):
        rpe = RecursivePathwayElimination(self.model, self)
        return_dict = rpe.fit(
            input_data=input_data,
            design_matrix=design_matrix,
            nr_iterations=nr_iterations,
            max_epochs=max_epochs,
            clip_threshold=clip_threshold,
            constant_removal_rate=constant_removal_rate,
            min_features_per_layer=min_features_per_layer,
            early_stopping=early_stopping,
        )

        self.rpe_model = rpe.get_final_model()
        self.rpe_data = rpe.get_final_data()

        return return_dict

    def explain_input(
        self, test_data: torch.Tensor, background_data: torch.Tensor
    ) -> dict:
        """
        Computes the SHAP explanations for the given test_data for a specific layer in the model by computing the
        Shapley values for each feature using the provided background_data. The feature importances are then returned
        in a dictionary.

        Args:
            test_data (torch.Tensor): The input data for which to generate the explanations.
            background_data (torch.Tensor): The background data to use for computing the Shapley values.
            layer (int): The index of the layer for which to compute the SHAP explanations.

        Returns:
            dict: A dictionary containing the SHAP feature importances.
        """

        explainer = shap.DeepExplainer(self.model, background_data)
        shap_values = explainer.shap_values(test_data)

        shap_dict = {"features": self.model.layer_names[0], "shap_values": shap_values}

        return shap_dict

    def _explain_layers(
        self, background_data: torch.tensor, test_data: torch.tensor
    ) -> dict:
        """
        Helper method to compute SHAP explanations for each layer in the model.

        Args:
            background_data (torch.Tensor): The background data to use for computing the Shapley values.
            test_data (torch.Tensor): The input data for which to generate the explanations.

        Returns:
            dict: A dictionary containing the SHAP feature importances for each layer.
        """
        feature_index = 0

        intermediate_data = test_data

        shap_dict = {"features": [], "shap_values": []}

        for name, layer in self.model.layers.named_children():
            if isinstance(layer, torch.nn.Linear) and (
                "Residual" not in name or "final" in name
            ):
                explainer = shap.DeepExplainer((self.model, layer), background_data)
                shap_values = explainer.shap_values(test_data)
                shap_dict["features"].append(self.model.layer_names[feature_index])
                shap_dict["shap_values"].append(shap_values)
                feature_index += 1

                intermediate_data = layer(intermediate_data)
            if (
                isinstance(layer, torch.nn.Tanh)
                or isinstance(layer, torch.nn.ReLU)
                or isinstance(layer, torch.nn.LeakyReLU)
            ):
                intermediate_data = layer(intermediate_data)
        return shap_dict

    def _explain_layer(
        self, background_data: torch.tensor, test_data: torch.tensor, wanted_layer: int
    ) -> dict:
        intermediate_data = test_data

        shap_dict = {"features": [], "shap_values": []}
        layer_index = 0
        for name, layer in self.model.layers.named_children():
            if isinstance(layer, torch.nn.Linear) and (
                "Residual" not in name or "final" in name
            ):
                if layer_index == wanted_layer:
                    explainer = shap.DeepExplainer((self.model, layer), background_data)
                    shap_values = explainer.shap_values(test_data)
                    shap_dict["features"] += self.model.layer_names[wanted_layer]
                    shap_dict["shap_values"] += shap_values
                    return shap_dict
                layer_index += 1
                intermediate_data = layer(intermediate_data)
            if (
                isinstance(layer, torch.nn.Tanh)
                or isinstance(layer, torch.nn.ReLU)
                or isinstance(layer, torch.nn.LeakyReLU)
            ):
                intermediate_data = layer(intermediate_data)
        return shap_dict

explain(test_data, background_data)

Generates SHAP explanations for a given test_data by computing the Shapley values for each feature using the provided background_data. The feature importances are then aggregated and returned in a pandas dataframe.

Parameters:

Name Type Description Default
test_data Tensor

The input data for which to generate the explanations.

required
background_data Tensor

The background data to use for computing the Shapley values.

required

Returns:

Type Description

pd.DataFrame: A dataframe containing the aggregated SHAP feature importances.

Source code in binn/explainer.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def explain(self, test_data: torch.tensor, background_data: torch.tensor):
    """
    Generates SHAP explanations for a given test_data by computing the Shapley values for each feature using
    the provided background_data. The feature importances are then aggregated and returned in a pandas dataframe.

    Args:
        test_data (torch.Tensor): The input data for which to generate the explanations.
        background_data (torch.Tensor): The background data to use for computing the Shapley values.

    Returns:
        pd.DataFrame: A dataframe containing the aggregated SHAP feature importances.
    """
    shap_dict = self._explain_layers(background_data, test_data)
    feature_dict = {
        "source": [],
        "target": [],
        "source name": [],
        "target name": [],
        "value": [],
        "type": [],
        "source layer": [],
        "target layer": [],
    }
    connectivity_matrices = self.model.get_connectivity_matrices()
    feature_id_mapping = {}

    feature_id = 0
    feature_id_mapping["root"] = feature_id
    for layer_features in shap_dict["features"]:
        for feature in layer_features:
            feature_id += 1
            feature_id_mapping[feature] = feature_id

    curr_layer = 0
    for sv, features, cm in zip(
        shap_dict["shap_values"], shap_dict["features"], connectivity_matrices
    ):
        sv = np.asarray(sv)
        sv = abs(sv)
        sv_mean = np.mean(sv, axis=1)

        for feature in range(sv_mean.shape[-1]):
            n_classes = sv_mean.shape[0]
            connections = cm[cm.index == features[feature]]
            connections = connections.loc[
                :, (connections != 0).any(axis=0)
            ]  # get targets and append to target
            for target in connections:
                for curr_class in range(n_classes):
                    feature_dict["source"].append(
                        feature_id_mapping[features[feature]]
                    )
                    feature_dict["target"].append(feature_id_mapping[target])
                    feature_dict["source name"].append(features[feature])
                    feature_dict["target name"].append(target)
                    feature_dict["value"].append(sv_mean[curr_class][feature])
                    feature_dict["type"].append(curr_class)
                    feature_dict["source layer"].append(curr_layer)
                    feature_dict["target layer"].append(curr_layer + 1)
        curr_layer += 1
    df = pd.DataFrame(data=feature_dict)
    return df

explain_average(test_data, background_data, nr_iterations, max_epochs, dataloader, fast_train)

Computes the SHAP explanations for the given test_data by averaging the Shapley values over multiple iterations. For each iteration, the model's parameters are randomly initialized and trained on the provided data using the provided trainer and dataloader. The feature importances are then aggregated and returned in a pandas dataframe.

Parameters:

Name Type Description Default
test_data Tensor

The input data for which to generate the explanations.

required
background_data Tensor

The background data to use for computing the Shapley values.

required
nr_iterations int

The number of iterations to use for averaging the Shapley values.

required
trainer

The PyTorch Lightning trainer to use for training the model.

required
dataloader

The PyTorch DataLoader to use for loading the data.

required

Returns:

Type Description
DataFrame

pd.DataFrame: A dataframe containing the aggregated SHAP feature importances.

Source code in binn/explainer.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def explain_average(
    self,
    test_data: torch.Tensor,
    background_data: torch.Tensor,
    nr_iterations: int,
    max_epochs: int,
    dataloader,
    fast_train : bool
) -> pd.DataFrame:
    """
    Computes the SHAP explanations for the given test_data by averaging the Shapley values over multiple iterations.
    For each iteration, the model's parameters are randomly initialized and trained on the provided data using
    the provided trainer and dataloader. The feature importances are then aggregated and returned in a pandas dataframe.

    Args:
        test_data (torch.Tensor): The input data for which to generate the explanations.
        background_data (torch.Tensor): The background data to use for computing the Shapley values.
        nr_iterations (int): The number of iterations to use for averaging the Shapley values.
        trainer: The PyTorch Lightning trainer to use for training the model.
        dataloader: The PyTorch DataLoader to use for loading the data.

    Returns:
        pd.DataFrame: A dataframe containing the aggregated SHAP feature importances.
    """
    dfs = {}
    for iteration in range(nr_iterations):
        print(f"Iteration {iteration}")
        self.model.reset_params()
        self.model.init_weights()
        if fast_train:
            optimizer = self.model.configure_optimizers()[0][0]
            self.model = self.fast_train(dataloader, max_epochs, optimizer)
        else:
            trainer = pl.Trainer(max_epochs=max_epochs)
            trainer.fit(self.model, dataloader)
        df = self.explain(test_data, background_data)
        dfs[iteration] = df

    col_names = [f"value_{n}" for n in range(len(list(dfs.keys())))]
    values = [df.value.values for df in dfs.values()]
    values = np.array(values)
    values_mean = np.mean(values, axis=0)
    values_std = np.std(values, axis=0)
    df = dfs[0].copy()
    df.drop(columns=["value"], inplace=True)
    df[col_names] = values.T
    df["value_mean"] = values_mean
    df["values_std"] = values_std
    df["value"] = values_mean
    return df

explain_input(test_data, background_data)

Computes the SHAP explanations for the given test_data for a specific layer in the model by computing the Shapley values for each feature using the provided background_data. The feature importances are then returned in a dictionary.

Parameters:

Name Type Description Default
test_data Tensor

The input data for which to generate the explanations.

required
background_data Tensor

The background data to use for computing the Shapley values.

required
layer int

The index of the layer for which to compute the SHAP explanations.

required

Returns:

Name Type Description
dict dict

A dictionary containing the SHAP feature importances.

Source code in binn/explainer.py
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
def explain_input(
    self, test_data: torch.Tensor, background_data: torch.Tensor
) -> dict:
    """
    Computes the SHAP explanations for the given test_data for a specific layer in the model by computing the
    Shapley values for each feature using the provided background_data. The feature importances are then returned
    in a dictionary.

    Args:
        test_data (torch.Tensor): The input data for which to generate the explanations.
        background_data (torch.Tensor): The background data to use for computing the Shapley values.
        layer (int): The index of the layer for which to compute the SHAP explanations.

    Returns:
        dict: A dictionary containing the SHAP feature importances.
    """

    explainer = shap.DeepExplainer(self.model, background_data)
    shap_values = explainer.shap_values(test_data)

    shap_dict = {"features": self.model.layer_names[0], "shap_values": shap_values}

    return shap_dict